Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Clin Invest ; 134(6)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194272

RESUMEN

BACKGROUNDSanaria PfSPZ Vaccine, composed of attenuated Plasmodium falciparum (Pf) sporozoites (SPZ), protects against malaria. We conducted this clinical trial to assess the safety and efficacy of PfSPZ Vaccine in HIV-positive (HIV+) individuals, since the HIV-infection status of participants in mass vaccination programs may be unknown.METHODSThis randomized, double-blind, placebo-controlled trial enrolled 18- to 45-year-old HIV-negative (HIV-) and well-controlled HIV+ Tanzanians (HIV viral load <40 copies/mL, CD4 counts >500 cells/µL). Participants received 5 doses of PfSPZ Vaccine or normal saline (NS) over 28 days, followed by controlled human malaria infection (CHMI) 3 weeks later.RESULTSThere were no solicited adverse events in the 9 HIV- and 12 HIV+ participants. After CHMI, 6 of 6 NS controls, 1 of 5 HIV- vaccinees, and 4 of 4 HIV+ vaccinees were Pf positive by quantitative PCR (qPCR). After immunization, anti-Pf circumsporozoite protein (anti-PfCSP) (isotype and IgG subclass) and anti-PfSPZ antibodies, anti-PfSPZ CD4+ T cell responses, and Vδ2+ γδ CD3+ T cells were nonsignificantly higher in HIV- than in HIV+ vaccinees. Sera from HIV- vaccinees had significantly higher inhibition of PfSPZ invasion of hepatocytes in vitro and antibody-dependent complement deposition (ADCD) and Fcγ3B binding by anti-PfCSP and ADCD by anti-cell-traversal protein for ookinetes and SPZ (anti-PfCelTOS) antibodies.CONCLUSIONSPfSPZ Vaccine was safe and well tolerated in HIV+ vaccinees, but not protective. Vaccine efficacy was 80% in HIV- vaccinees (P = 0.012), whose sera had significantly higher inhibition of PfSPZ invasion of hepatocytes and enrichment of multifunctional PfCSP antibodies. A more potent PfSPZ vaccine or regimen is needed to protect those living with HIV against Pf infection in Africa.TRIAL REGISTRATIONClinicalTrials.gov NCT03420053.FUNDINGEquatorial Guinea Malaria Vaccine Initiative (EGMVI), made up of the Government of Equatorial Guinea Ministries of Mines and Hydrocarbons, and Health and Social Welfare, Marathon Equatorial Guinea Production Limited, Noble Energy, Atlantic Methanol Production Company, and EG LNG; Swiss government, through ESKAS scholarship grant no. 2016.0056; Intramural Research Program of the National Institute of Allergy and Infectious Diseases, NIH; NIH grant 1U01AI155354-01.


Asunto(s)
Infecciones por VIH , Vacunas contra la Malaria , Malaria Falciparum , Adolescente , Adulto , Humanos , Persona de Mediana Edad , Adulto Joven , Anticuerpos Antiprotozoarios , Pueblo de África Oriental , Infecciones por VIH/complicaciones , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum , Tanzanía , Seronegatividad para VIH , Seropositividad para VIH , Eficacia de las Vacunas
2.
PLoS One ; 18(9): e0291244, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37708143

RESUMEN

BACKGROUND: Pre-vaccination monocyte-to-lymphocyte ratio was previously suggested as a marker for malaria vaccine effectiveness. We investigated the potential of this cell ratio as a marker for malaria vaccine efficacy and effectiveness. Effectiveness was investigated by using clinical malaria endpoint, and efficacy was investigated by using surrogate endpoints of Plasmodium falciparum prepatent period, parasite density, and multiplication rates in a controlled human malaria infection trial (CHMI). METHODS: We evaluated the correlation between monocyte-to-lymphocyte ratio and RTS,S vaccine effectiveness using Cox regression modeling with clinical malaria as the primary endpoint. Of the 1704 participants in the RTS,S field trial, data on monocyte-to-lymphocyte ratio was available for 842 participants, of whom our analyses were restricted. We further used Spearman Correlations and Cox regression modeling to evaluate the correlation between monocyte-to-lymphocyte ratio and Whole Sporozoite malaria vaccine efficacy using the surrogate endpoints. Of the 97 participants in the controlled human malaria infection vaccine trials, hematology and parasitology information were available for 82 participants, of whom our analyses were restricted. RESULTS: The unadjusted efficacy of RTS,S malaria vaccine was 54% (95% CI: 37%-66%, p <0.001). No correlation was observed between monocyte-to-lymphocyte ratio and RTS,S vaccine efficacy (Hazard Rate (HR):0.90, 95%CI:0.45-1.80; p = 0.77). The unadjusted efficacy of Whole Sporozoite malaria vaccine in the appended dataset was 17.6% (95%CI:10%-28.5%, p<0.001). No association between monocyte-to-lymphocyte ratio and the Whole Sporozoite malaria vaccine was found against either the prepatent period (HR = 1.16; 95%CI:0.51-2.62, p = 0.72), parasite density (rho = 0.004, p = 0.97) or multiplication rates (rho = 0.031, p = 0.80). CONCLUSION: Monocyte-to-lymphocyte ratio alone may not be an adequate marker for malaria vaccine efficacy. Further investigations on immune correlates and underlying mechanisms of immune protection against malaria could provide a clearer explanation of the differences between those protected in comparison with those not protected against malaria by vaccination.


Asunto(s)
Vacunas contra la Malaria , Humanos , Animales , Vacunas contra la Malaria/uso terapéutico , Monocitos , Biomarcadores , Linfocitos , Esporozoítos , Vacunación
3.
Am J Trop Med Hyg ; 109(4): 895-907, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37696518

RESUMEN

Although studies on COVID-19 vaccine hesitancy are being undertaken widely worldwide, there is limited evidence in Tanzania. This study aims to assess the sociodemographic factors associated with COVID-19 vaccine hesitancy and the reasons given by unvaccinated study participants. We conducted a mixed-method cross-sectional study with two components-health facilities and communities-between March and September 2022. A structured questionnaire and in-depth interviews were used to collect quantitative and qualitative data, respectively. A total of 1,508 individuals agreed to participate in the survey and explained why they had not vaccinated against COVID-19. Of these participants, 62% indicated they would accept the vaccine, whereas 38% expressed skepticism. In a multivariate regression analysis, adult study participants 40 years and older were significantly more likely to report not intending to be vaccinated (adjusted odds ratio [AOR], 1.28; 95% CI, 1.01-1.61; P = 0.04) than youth and middle-aged study participants between 18 and 40 years. Furthermore, female study participants had a greater likelihood of not intending to be vaccinated (AOR, 1.51; 95% CI, 1.19-1.90; P = 0.001) than male study participants. The study identified fear of safety and short-term side effects, and lack of trust of the COVID-19 vaccine; belief in spiritual or religious views; and belief in local remedies and other precautions or preventive measures as the major contributors to COVID-19 vaccine hesitancy in Tanzania. Further empirical studies are needed to confirm these findings and to understand more fully the reasons for vaccine hesitancy in different demographic groups.

4.
Expert Rev Vaccines ; 22(1): 964-1007, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37571809

RESUMEN

INTRODUCTION: Malaria, a devastating febrile illness caused by protozoan parasites, sickened 247,000,000 people in 2021 and killed 619,000, mostly children and pregnant women in sub-Saharan Africa. A highly effective vaccine is urgently needed, especially for Plasmodium falciparum (Pf), the deadliest human malaria parasite. AREAS COVERED: Sporozoites (SPZ), the parasite stage transmitted by Anopheles mosquitoes to humans, are the only vaccine immunogen achieving >90% efficacy against Pf infection. This review describes >30 clinical trials of PfSPZ vaccines in the U.S.A., Europe, Africa, and Asia, based on first-hand knowledge of the trials and PubMed searches of 'sporozoites,' 'malaria,' and 'vaccines.' EXPERT OPINION: First generation (radiation-attenuated) PfSPZ vaccines are safe, well tolerated, 80-100% efficacious against homologous controlled human malaria infection (CHMI) and provide 18-19 months protection without boosting in Africa. Second generation chemo-attenuated PfSPZ are more potent, 100% efficacious against stringent heterologous (variant strain) CHMI, but require a co-administered drug, raising safety concerns. Third generation, late liver stage-arresting, replication competent (LARC), genetically-attenuated PfSPZ are expected to be both safe and highly efficacious. Overall, PfSPZ vaccines meet safety, tolerability, and efficacy requirements for protecting pregnant women and travelers exposed to Pf in Africa, with licensure for these populations possible within 5 years. Protecting children and mass vaccination programs to block transmission and eliminate malaria are long-term objectives.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Embarazo , Niño , Animales , Humanos , Femenino , Esporozoítos , Ciencia Traslacional Biomédica , Vacunas Atenuadas , Malaria/prevención & control , Malaria Falciparum/prevención & control , Plasmodium falciparum , Inmunización
5.
Confl Health ; 17(1): 27, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277827

RESUMEN

BACKGROUND: The WHO Non-Communicable Diseases Kit (NCDK) was developed to support care for non-communicable diseases (NCDs) in humanitarian settings. Targeting primary healthcare, each kit contains medicines and supplies that are forecasted to meet the needs of 10,000 people for 3 months. This study aimed to evaluate the NCDK deployment process, contents, usage and limitations, and to explore its acceptability and effectiveness among healthcare workers (HCWs) in South Sudan. METHODS: This mixed-method observational study captured data from pre-and-post NCDK deployment. Six data collection tools included: (i) contextual analysis, (ii) semi-structured interviews, in addition to surveys measuring/assessing (iii) healthcare workers' knowledge about NCDs, and healthcare workers' perceptions of: (iv) health facility infrastructure, (v) pharmaceutical supply chain, and (vi) NCDK content. The pre- and post-deployment evaluations were conducted in four facilities (October-2019) and three facilities (April-2021), respectively. Descriptive statistics were used for quantitative data and content analysis for open-ended questions. A thematic analysis was applied on interviews findings and further categorized into four predetermined themes. RESULTS: Compared to baseline, two of the re-assessed facilities had improved service availability for NCDs. Respondents described NCDs as a growing problem that is not addressed at a national level. After deployment, the same struggles were intensified with the COVID-19 pandemic. The delivery process was slow and faced delays associated with several barriers. After deployment, poor communications and the "push system" of inventories were commonly perceived by stakeholders, leading to expiry/disposal of some contents. Despite being out-of-stock at baseline, at least 55% of medicines were found to be unused post-deployment and the knowledge surveys demonstrated a need for improving HCWs knowledge of NCDs. CONCLUSIONS: This assessment further confirmed the NCDK role in maintaining continuity of care on a short-term period. However, its effectiveness was dependent on the health system supply chain in place and the capacity of facilities to manage and treat NCDs. Availability of medicines from alternative sources made some of the NCDK medicines redundant or unnecessary for some health facilities. Several learnings were identified in this assessment, highlighting barriers that contributed to the kit underutilization.

6.
Am J Trop Med Hyg ; 109(1): 138-146, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37160281

RESUMEN

The radiation-attenuated Plasmodium falciparum sporozoites (PfSPZ) Vaccine has demonstrated safety and immunogenicity in 5-month-old to 50-year-old Africans in multiple trials. Except for one, each trial has restricted enrollment to either infants and children or adults < 50 years old. This trial was conducted in Equatorial Guinea and assessed the safety, tolerability, and immunogenicity of three direct venous inoculations of 1.8 × 106 or 2.7 × 106 PfSPZ, of PfSPZ Vaccine, or normal saline administered at 8-week intervals in a randomized, double-blind, placebo-controlled trial stratified by age (6-11 months and 1-5, 6-10, 11-17, 18-35, and 36-61 years). All doses were successfully administered. In all, 192/207 injections (93%) in those aged 6-61 years were rated as causing no or mild pain. There were no significant differences in solicited adverse events (AEs) between vaccinees and controls in any age group (P ≥ 0.17). There were no significant differences between vaccinees and controls with respect to the rates or severity of unsolicited AEs or laboratory abnormalities. Development of antibodies to P. falciparum circumsporozoite protein occurred in 67/69 vaccinees (97%) and 0/15 controls. Median antibody levels were highest in infants and 1-5-year-olds and declined progressively with age. Antibody responses in children were greater than in adults protected against controlled human malaria infection. Robust immunogenicity, combined with a benign AE profile, indicates children are an ideal target for immunization with PfSPZ Vaccine.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Animales , Adulto , Humanos , Niño , Lactante , Preescolar , Persona de Mediana Edad , Plasmodium falciparum , Malaria Falciparum/prevención & control , Esporozoítos , Vacunas Atenuadas , Guinea Ecuatorial , Método Doble Ciego , Inmunogenicidad Vacunal
7.
Trop Med Infect Dis ; 7(12)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36548651

RESUMEN

BACKGROUND: Though Maytenus senegalensis is one of the medicinal plants widely used in traditional medicine to treat infectious and inflammatory diseases in Africa, there is a lack of safety data regarding its use. Therefore, the study aimed to asselss the safety and tolerability of the antimalarial herbal remedy M. senegalensis. MATERIAL AND METHODS: The study design was an open-label, single-arm, dose-escalation. Twelve eligible male healthy Tanzanians aged 18 to 45 years were enrolled in four study dose groups. Volunteers' safety and tolerability post-investigational-product administration were monitored on days 0 to 7,14, and 56. RESULTS: There were no deaths or serious adverse events in any of the study groups, nor any adverse events that resulted in premature discontinuation. The significant mean changes observed in WBC (p = 0.003), Neutrophils (p = 0.02), Lymphocytes (p = 0.001), Eosinophils (p = 0.009), Alanine aminotransferase (p = 0.002), Creatinine (p = 0.03) and Total bilirubin (p = 0.004) laboratory parameters were not associated with any signs of toxicity or clinical symptoms. CONCLUSIONS: M. senegalensis was demonstrated to be safe and tolerable when administered at a dose of 800 mg every eight hours a day for four days. This study design may be adapted to evaluate other herbal remedies.

8.
Front Immunol ; 13: 1006716, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389797

RESUMEN

Background: While prior research has shown differences in the risk of malaria infection and sickness between males and females, little is known about sex differences in vaccine-induced immunity to malaria. Identifying such differences could elucidate important aspects of malaria biology and facilitate development of improved approaches to malaria vaccination. Methods: Using a standardized enzyme-linked immunosorbent assay, IgG antibodies to the major surface protein on Plasmodium falciparum (Pf) sporozoites (SPZ), the Pf circumsporozoite protein (PfCSP), were measured before and two weeks after administration of a PfSPZ-based malaria vaccine (PfSPZ Vaccine) to 5-month to 61-year-olds in 11 clinical trials in Germany, the US and five countries in Africa, to determine if there were differences in vaccine elicited antibody response between males and females and if these differences were associated with differential protection against naturally transmitted Pf malaria (Africa) or controlled human malaria infection (Germany, the US and Africa). Results: Females ≥ 11 years of age made significantly higher levels of antibodies to PfCSP than did males in most trials, while there was no indication of such differences in infants or children. Although adult females had higher levels of antibodies, there was no evidence of improved protection compared to males. In 2 of the 7 trials with sufficient data, protected males had significantly higher levels of antibodies than unprotected males, and in 3 other trials protected females had higher levels of antibodies than did unprotected females. Conclusion: Immunization with PfSPZ Vaccine induced higher levels of antibodies in post-pubertal females but showed equivalent protection in males and females. We conclude that the increased antibody levels in post-pubertal females did not contribute substantially to improved protection. We hypothesize that while antibodies to PfCSP (and PfSPZ) may potentially contribute directly to protection, they primarily correlate with other, potentially protective immune mechanisms, such as antibody dependent and antibody independent cellular responses in the liver.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Adulto , Niño , Lactante , Animales , Femenino , Humanos , Masculino , Malaria Falciparum/prevención & control , Plasmodium falciparum , Esporozoítos , Malaria/tratamiento farmacológico
9.
PLoS One ; 17(7): e0271828, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35862395

RESUMEN

BACKGROUND: The success of any randomized clinical trial relies on the willingness of people to be recruited in the trial. However, 90% of all clinical trials worldwide have been reported to have failed to recruit the required number of trial participants within the scheduled time. This study aimed to qualitatively explore the motivations and barriers for healthy participants to participate in herbal remedy clinical trials in Tanzania. MATERIALS AND METHODS: This study used a qualitative descriptive research design based on the theory of planned behaviour. A total of five Focus Group Discussions (FGD) were conducted at Bagamoyo Clinical Trial Facility from 29 to 30 May 2021. Each group consisted of 5 to 10 participants. The participants of the study were 30 healthy males aged 18 to 45 male who participated in the clinical trial that evaluated the safety, tolerability, and efficacy of Maytenus Senegalensis. The focus group discussions were recorded audio-recorded. Verbatim transcription and thematic analysis were performed on the data. RESULTS: The prominent motivations mentioned were the opportunity for self-development, altruism, flexible study visit schedule, and financial compensation. Furthermore, the Participants' mothers and friends were reported as those most likely to approve of participation in an herbal remedy. The most mentioned barriers were inconvenience related to time commitment requirements, possible side effects, inflexible study visit schedule, and having other commitments. Moreover, the participants' father was reported to be more likely to disapprove of participation in a clinical trial of herbal remedy clinical trial. CONCLUSIONS: The results of this study showed that the motivations and barriers of healthy participants to participate in clinical trials of herbal remedies are varied and that participants are motivated by more than financial gains. The identified motivations and barriers can be used as a guideline to improve the design of recruitment and retention strategies for herbal remedy clinical trials.


Asunto(s)
Motivación , Grupos Focales , Voluntarios Sanos , Humanos , Masculino , Investigación Cualitativa , Tanzanía
10.
Antimicrob Agents Chemother ; 66(5): e0169621, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35465706

RESUMEN

The combination antimalarial therapy of artemisinin-naphthoquine (ART-NQ) was developed as a single-dose therapy, aiming to improve adherence relative to the multiday schedules of other artemisinin combination therapies. The pharmacokinetics of ART-NQ has not been well characterized, especially in children. A pharmacokinetic study was conducted in adults and children over 5 years of age (6 to 10, 11 to 17, and ≥18 years of age) with uncomplicated malaria in Tanzania. The median weights for the three age groups were 20, 37.5, and 55 kg, respectively. Twenty-nine patients received single doses of 20 mg/kg of body weight for artemisinin and 8 mg/kg for naphthoquine, and plasma drug concentrations were assessed at 13 time points over 42 days from treatment. We used nonlinear mixed-effects modeling to interpret the data, and allometric scaling was employed to adjust for the effect of body size. The pharmacokinetics of artemisinin was best described by one-compartment model and that of naphthoquine by a two-compartment disposition model. Clearance values for a typical patient (55-kg body weight and 44.3-kg fat-free mass) were estimated as 66.7 L/h (95% confidence interval [CI], 57.3 to 78.5 L/h) for artemisinin and 44.2 L/h (95% CI, 37.9 to 50.6 L/h) for naphthoquine. Nevertheless, we show via simulation that patients weighing ≥70 kg achieve on average a 30% lower day 7 concentration compared to a 48-kg reference patient at the doses tested, suggesting dose increases may be warranted to ensure adequate exposure. (This study has been registered at ClinicalTrials.gov under identifier NCT01930331.).


Asunto(s)
Antimaláricos , Artemisininas , Antagonistas del Ácido Fólico , Malaria Falciparum , Naftoquinonas , 1-Naftilamina/análogos & derivados , Adolescente , Adulto , Aminoquinolinas , Antimaláricos/efectos adversos , Artemisininas/efectos adversos , Peso Corporal , Niño , Humanos , Malaria Falciparum/tratamiento farmacológico , Naftoquinonas/uso terapéutico , Tanzanía
11.
Malar J ; 21(1): 99, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35331251

RESUMEN

BACKGROUND: Progress towards malaria elimination has stagnated, partly because infections persisting at low parasite densities comprise a large reservoir contributing to ongoing malaria transmission and are difficult to detect. This study compared the performance of an ultrasensitive rapid diagnostic test (uRDT) designed to detect low density infections to a conventional RDT (cRDT), expert microscopy using Giemsa-stained thick blood smears (TBS), and quantitative polymerase chain reaction (qPCR) during a controlled human malaria infection (CHMI) study conducted in malaria exposed adults (NCT03590340). METHODS: Blood samples were collected from healthy Equatoguineans aged 18-35 years beginning on day 8 after CHMI with 3.2 × 103 cryopreserved, infectious Plasmodium falciparum sporozoites (PfSPZ Challenge, strain NF54) administered by direct venous inoculation. qPCR (18s ribosomal DNA), uRDT (Alere™ Malaria Ag P.f.), cRDT [Carestart Malaria Pf/PAN (PfHRP2/pLDH)], and TBS were performed daily until the volunteer became TBS positive and treatment was administered. qPCR was the reference for the presence of Plasmodium falciparum parasites. RESULTS: 279 samples were collected from 24 participants; 123 were positive by qPCR. TBS detected 24/123 (19.5% sensitivity [95% CI 13.1-27.8%]), uRDT 21/123 (17.1% sensitivity [95% CI 11.1-25.1%]), cRDT 10/123 (8.1% sensitivity [95% CI 4.2-14.8%]); all were 100% specific and did not detect any positive samples not detected by qPCR. TBS and uRDT were more sensitive than cRDT (TBS vs. cRDT p = 0.015; uRDT vs. cRDT p = 0.053), detecting parasitaemias as low as 3.7 parasites/µL (p/µL) (TBS and uRDT) compared to 5.6 p/µL (cRDT) based on TBS density measurements. TBS, uRDT and cRDT did not detect any of the 70/123 samples positive by qPCR below 5.86 p/µL, the qPCR density corresponding to 3.7 p/µL by TBS. The median prepatent periods in days (ranges) were 14.5 (10-20), 18.0 (15-28), 18.0 (15-20) and 18.0 (16-24) for qPCR, TBS, uRDT and cRDT, respectively; qPCR detected parasitaemia significantly earlier (3.5 days) than the other tests. CONCLUSIONS: TBS and uRDT had similar sensitivities, both were more sensitive than cRDT, and neither matched qPCR for detecting low density parasitaemia. uRDT could be considered an alternative to TBS in selected applications, such as CHMI or field diagnosis, where qualitative, dichotomous results for malaria infection might be sufficient.


Asunto(s)
Malaria , Plasmodium falciparum , Adolescente , Adulto , Pruebas Diagnósticas de Rutina/métodos , Guinea Ecuatorial , Humanos , Plasmodium falciparum/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Adulto Joven
12.
Am J Trop Med Hyg ; 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35130487

RESUMEN

Plasmodium falciparum sporozoites (PfSPZ) Vaccine is composed of radiation-attenuated, aseptic, purified cryopreserved PfSPZ. Multiple clinical trials empirically assessing two to six doses have shown multi-dose priming (-two to four doses the first week) to be optimal for protection in both 4- and 16-week regimens. In this randomized, double-blind, normal saline (NS), placebo-controlled trial, four groups (G) of 18- to 32-year-old Equatoguineans received multi-dose priming regimens with or without a delayed final dose at 4 or 16 weeks (9 × 105 PfSPZ/dose). The regimens were G1: days 1, 3, 5, 7, and 113; G2: days 1, 3, 5, and 7; G3: days 1, 3, 5, 7, and 29; and G4: days 1, 8, and 29). All doses were 9 × 105 PfSPZ. Tolerability, safety, immunogenicity, and vaccine efficacy (VE) against homologous-controlled human malaria infection (CHMI) 6-7 weeks after vaccination were assessed to down-select the best regimen. All four regimens were safe and well tolerated, with no significant differences in adverse events (AEs) between vaccinees (N = 84) and NS controls (N = 20) or between regimens. Out of 19 controls, 13 developed Pf parasitemia by quantitative polymerase chain reaction (qPCR) after CHMI. Only the vaccine regimen administered on study days 1, 8, and 29 gave significant protection (7/21 vaccinees versus 13/19 controls infected, VE 51.3%, P = 0.03, Barnard's test, two-tailed). There were no significant differences in antibodies against Pf circumporozoite protein (PfCSP), a major SPZ antigen, between protected and nonprotected vaccinees or controls pre-CHMI. The six controls not developing Pf parasitemia had significantly higher antibodies to blood stage antigens Pf exported protein 1 (PfEXP1) and Pf merozoite surface protein 1 (PfMSP1) than the controls who developed parasitemia, suggesting naturally acquired immunity against Pf-limited infections in controls. This study identified a safe, protective, 4-week, multi-dose prime vaccination regimen for assessment in future trials of PfSPZ Vaccine.

13.
Nat Med ; 27(9): 1636-1645, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34518679

RESUMEN

The radiation-attenuated Plasmodium falciparum sporozoite (PfSPZ) vaccine provides protection against P. falciparum infection in malaria-naïve adults. Preclinical studies show that T cell-mediated immunity is required for protection and is readily induced in humans after vaccination. However, previous malaria exposure can limit immune responses and vaccine efficacy (VE) in adults. We hypothesized that infants with less previous exposure to malaria would have improved immunity and protection. We conducted a multi-arm, randomized, double-blind, placebo-controlled trial in 336 infants aged 5-12 months to determine the safety, tolerability, immunogenicity and efficacy of the PfSPZ Vaccine in infants in a high-transmission malaria setting in western Kenya ( NCT02687373 ). Groups of 84 infants each received 4.5 × 105, 9.0 × 105 or 1.8 × 106 PfSPZ Vaccine or saline three times at 8-week intervals. The vaccine was well tolerated; 52 (20.6%) children in the vaccine groups and 20 (23.8%) in the placebo group experienced related solicited adverse events (AEs) within 28 d postvaccination and most were mild. There was 1 grade 3-related solicited AE in the vaccine group (0.4%) and 2 in the placebo group (2.4%). Seizures were more common in the highest-dose group (14.3%) compared to 6.0% of controls, with most being attributed to malaria. There was no significant protection against P. falciparum infection in any dose group at 6 months (VE in the 9.0 × 105 dose group = -6.5%, P = 0.598, the primary statistical end point of the study). VE against clinical malaria 3 months after the last dose in the highest-dose group was 45.8% (P = 0.027), an exploratory end point. There was a dose-dependent increase in antibody responses that correlated with VE at 6 months in the lowest- and highest-dose groups. T cell responses were undetectable across all dose groups. Detection of Vδ2+Vγ9+ T cells, which have been correlated with induction of PfSPZ Vaccine T cell immunity and protection in adults, were infrequent. These data suggest that PfSPZ Vaccine-induced T cell immunity is age-dependent and may be influenced by Vδ2+Vγ9+ T cell frequency. Since there was no significant VE at 6 months in these infants, these vaccine regimens will likely not be pursued further in this age group.


Asunto(s)
Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Vacunas Atenuadas/administración & dosificación , Adulto , Formación de Anticuerpos/efectos de los fármacos , Formación de Anticuerpos/inmunología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Método Doble Ciego , Humanos , Lactante , Kenia/epidemiología , Vacunas contra la Malaria/efectos adversos , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Malaria Falciparum/prevención & control , Plasmodium falciparum/patogenicidad , Esporozoítos/efectos de los fármacos , Esporozoítos/patogenicidad , Linfocitos T/efectos de los fármacos , Vacunación , Vacunas Atenuadas/efectos adversos
14.
Malar J ; 20(1): 322, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34284778

RESUMEN

BACKGROUND: Extensive malaria control measures have been implemented on Bioko Island, Equatorial Guinea over the past 16 years, reducing parasite prevalence and malaria-related morbidity and mortality, but without achieving elimination. Malaria vaccines offer hope for reducing the burden to zero. Three phase 1/2 studies have been conducted successfully on Bioko Island to evaluate the safety and efficacy of whole Plasmodium falciparum (Pf) sporozoite (SPZ) malaria vaccines. A large, pivotal trial of the safety and efficacy of the radiation-attenuated Sanaria® PfSPZ Vaccine against P. falciparum is planned for 2022. This study assessed the incidence of malaria at the phase 3 study site and characterized the influence of socio-demographic factors on the burden of malaria to guide trial design. METHODS: A cohort of 240 randomly selected individuals aged 6 months to 45 years from selected areas of North Bioko Province, Bioko Island, was followed for 24 weeks after clearance of parasitaemia. Assessment of clinical presentation consistent with malaria and thick blood smears were performed every 2 weeks. Incidence of first and multiple malaria infections per person-time of follow-up was estimated, compared between age groups, and examined for associated socio-demographic risk factors. RESULTS: There were 58 malaria infection episodes observed during the follow up period, including 47 first and 11 repeat infections. The incidence of malaria was 0.25 [95% CI (0.19, 0.32)] and of first malaria was 0.23 [95% CI (0.17, 0.30)] per person per 24 weeks (0.22 in 6-59-month-olds, 0.26 in 5-17-year-olds, 0.20 in 18-45-year-olds). Incidence of first malaria with symptoms was 0.13 [95% CI (0.09, 0.19)] per person per 24 weeks (0.16 in 6-59-month-olds, 0.10 in 5-17-year-olds, 0.11 in 18-45-year-olds). Multivariate assessment showed that study area, gender, malaria positivity at screening, and household socioeconomic status independently predicted the observed incidence of malaria. CONCLUSION: Despite intensive malaria control efforts on Bioko Island, local transmission remains and is spread evenly throughout age groups. These incidence rates indicate moderate malaria transmission which may be sufficient to support future larger trials of PfSPZ Vaccine. The long-term goal is to conduct mass vaccination programmes to halt transmission and eliminate P. falciparum malaria.


Asunto(s)
Malaria Falciparum/epidemiología , Adolescente , Adulto , Niño , Preescolar , Guinea Ecuatorial/epidemiología , Humanos , Incidencia , Lactante , Malaria Falciparum/parasitología , Factores Socioeconómicos , Adulto Joven
15.
Malar J ; 20(1): 308, 2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34243763

RESUMEN

BACKGROUND: Vaccination with radiation-attenuated Plasmodium falciparum sporozoites is known to induce protective immunity. However, the mechanisms underlying this protection remain unclear. In this work, two recent radiation-attenuated sporozoite vaccination studies were used to identify potential transcriptional correlates of vaccination-induced protection. METHODS: Longitudinal whole blood RNAseq transcriptome responses to immunization with radiation-attenuated P. falciparum sporozoites were analysed and compared across malaria-naïve adult participants (IMRAS) and malaria-experienced adult participants (BSPZV1). Parasite dose and method of delivery differed between trials, and immunization regimens were designed to achieve incomplete protective efficacy. Observed protective efficacy was 55% in IMRAS and 20% in BSPZV1. Study vaccine dosings were chosen to elicit both protected and non-protected subjects, so that protection-associated responses could be identified. RESULTS: Analysis of comparable time points up to 1 week after the first vaccination revealed a shared cross-study transcriptional response programme, despite large differences in number and magnitude of differentially expressed genes between trials. A time-dependent regulatory programme of coherent blood transcriptional modular responses was observed, involving induction of inflammatory responses 1-3 days post-vaccination, with cell cycle responses apparent by day 7 in protected individuals from both trials. Additionally, strongly increased induction of inflammation and interferon-associated responses was seen in non-protected IMRAS participants. All individuals, except for non-protected BSPZV1 participants, showed robust upregulation of cell-cycle associated transcriptional responses post vaccination. CONCLUSIONS: In summary, despite stark differences between the two studies, including route of vaccination and status of malaria exposure, responses were identified that were associated with protection after PfRAS vaccination. These comprised a moderate early interferon response peaking 2 days post vaccination, followed by a later proliferative cell cycle response steadily increasing over the first 7 days post vaccination. Non-protection is associated with deviations from this model, observed in this study with over-induction of early interferon responses in IMRAS and failure to mount a cell cycle response in BSPZV1.


Asunto(s)
Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/prevención & control , Anticuerpos Antiprotozoarios/sangre , Ensayos Clínicos como Asunto , Humanos , Vacunas contra la Malaria/administración & dosificación , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Proteínas Protozoarias/genética , Esporozoítos/genética , Esporozoítos/inmunología , Transcripción Genética , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/uso terapéutico
16.
Virol J ; 18(1): 28, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33499880

RESUMEN

BACKGROUND: Diverse vaccination outcomes and protection levels among different populations pose a serious challenge to the development of an effective malaria vaccine. Co-infections are among many factors associated with immune dysfunction and sub-optimal vaccination outcomes. Chronic, asymptomatic viral infections can contribute to the modulation of vaccine efficacy through various mechanisms. Human Pegivirus-1 (HPgV-1) persists in immune cells thereby potentially modulating immune responses. We investigated whether Pegivirus infection influences vaccine-induced responses and protection in African volunteers undergoing whole P. falciparum sporozoites-based malaria vaccination and controlled human malaria infections (CHMI). METHODS: HPgV-1 prevalence was quantified by RT-qPCR in plasma samples of 96 individuals before, post vaccination with PfSPZ Vaccine and after CHMI in cohorts from Tanzania and Equatorial Guinea. The impact of HPgV-1 infection was evaluated on (1) systemic cytokine and chemokine levels measured by Luminex, (2) PfCSP-specific antibody titers quantified by ELISA, (3) asexual blood-stage parasitemia pre-patent periods and parasite multiplication rates, (4) HPgV-1 RNA levels upon asexual blood-stage parasitemia induced by CHMI. RESULTS: The prevalence of HPgV-1 was 29.2% (28/96) and sequence analysis of the 5' UTR and E2 regions revealed the predominance of genotypes 1, 2 and 5. HPgV-1 infection was associated with elevated systemic levels of IL-2 and IL-17A. Comparable vaccine-induced anti-PfCSP antibody titers, asexual blood-stage multiplication rates and pre-patent periods were observed in HPgV-1 positive and negative individuals. However, a tendency for higher protection levels was detected in the HPgV-1 positive group (62.5%) compared to the negative one (51.6%) following CHMI. HPgV-1 viremia levels were not significantly altered after CHMI. CONCLUSIONS: HPgV-1 infection did not alter PfSPZ Vaccine elicited levels of PfCSP-specific antibody responses and parasite multiplication rates. Ongoing HPgV-1 infection appears to improve to some degree protection against CHMI in PfSPZ-vaccinated individuals. This is likely through modulation of immune system activation and systemic cytokines as higher levels of IL-2 and IL17A were observed in HPgV-1 infected individuals. CHMI is safe and well tolerated in HPgV-1 infected individuals. Identification of cell types and mechanisms of both silent and productive infection in individuals will help to unravel the biology of this widely present but largely under-researched virus.


Asunto(s)
Coinfección/inmunología , Infecciones por Flaviviridae/inmunología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Esporozoítos/inmunología , Adolescente , Adulto , Estudios de Cohortes , Coinfección/complicaciones , Coinfección/parasitología , Coinfección/virología , Femenino , Infecciones por Flaviviridae/sangre , Infecciones por Flaviviridae/complicaciones , Infecciones por Flaviviridae/epidemiología , Guinea , Humanos , Vacunas contra la Malaria/administración & dosificación , Masculino , Persona de Mediana Edad , Pegivirus/genética , Pegivirus/inmunología , Plasmodium falciparum/inmunología , Ensayos Clínicos Controlados Aleatorios como Asunto , Tanzanía , Vacunación , Potencia de la Vacuna , Adulto Joven
17.
Nanoscale ; 13(4): 2338-2349, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33438712

RESUMEN

Malaria is a life-threatening epidemic disease with half of the world's population at risk. Although its incidence rate has fallen since 2010, this ratio dramatically stalled between 2014 and 2018. New fast and optimized tools in vaccine analysis and seroconversion testing are critically needed. We developed a clinical diagnostic device based on piezo-actuated nanoresonators that perform as quantitative in situ calibrated nano-bio sensors for specific detection of multiple target molecules in serum samples. The immunoassay successfully diagnoses humoral immune responses induced by malaria vaccine candidates and reveals the timeline and stage of the infection. We applied the newly developed strategy to a variety of different samples, from pure antibody/vaccine solutions, to blood samples from clinical trials on both naïve and pre-exposed malaria volunteers from sub-Saharan countries. Our nanomechanical assay provides a direct one-step label-free quantitative immunoassay that is on par with the gold-standard, multi-step enzyme-linked immunosorbent assay (ELISA). We achieve a limit of detection of few pg ml-1, or sub-pM concentrations. The 6 µl sample volume allows more than 50 experiments from one finger prick. Furthermore, we simultaneously detected multiple analytes by differential functionalization of multiple sensors in parallel. The inherent differential read-out with in situ controls reduces false positive results. Due to the faster turnaround time, the minimal volume required and the automatized handling system, this technique has great potential for miniaturization and routine diagnostics in pandemic emergencies.


Asunto(s)
Vacunas contra la Malaria , Malaria , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoensayo , Malaria/diagnóstico , Malaria/prevención & control , Nanotecnología
18.
Am J Trop Med Hyg ; 104(1): 283-293, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33205741

RESUMEN

Plasmodium falciparum sporozoite (PfSPZ) Vaccine (radiation-attenuated, aseptic, purified, cryopreserved PfSPZ) and PfSPZ-CVac (infectious, aseptic, purified, cryopreserved PfSPZ administered to subjects taking weekly chloroquine chemoprophylaxis) have shown vaccine efficacies (VEs) of 100% against homologous controlled human malaria infection (CHMI) in nonimmune adults. Plasmodium falciparum sporozoite-CVac has never been assessed against CHMI in African vaccinees. We assessed the safety, immunogenicity, and VE against homologous CHMI of three doses of 2.7 × 106 PfSPZ of PfSPZ Vaccine at 8-week intervals and three doses of 1.0 × 105 PfSPZ of PfSPZ-CVac at 4-week intervals with each arm randomized, double-blind, placebo-controlled, and conducted in parallel. There were no differences in solicited adverse events between vaccinees and normal saline controls, or between PfSPZ Vaccine and PfSPZ-CVac recipients during the 6 days after administration of investigational product. However, from days 7-13, PfSPZ-CVac recipients had significantly more AEs, probably because of Pf parasitemia. Antibody responses were 2.9 times higher in PfSPZ Vaccine recipients than PfSPZ-CVac recipients at time of CHMI. Vaccine efficacy at a median of 14 weeks after last PfSPZ-CVac dose was 55% (8 of 13, P = 0.051) and at a median of 15 weeks after last PfSPZ Vaccine dose was 27% (5 of 15, P = 0.32). The higher VE in PfSPZ-CVac recipients of 55% with a 27-fold lower dose was likely a result of later stage parasite maturation in the liver, leading to induction of cellular immunity against a greater quantity and broader array of antigens.


Asunto(s)
Inmunogenicidad Vacunal , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Adolescente , Adulto , Anciano , Animales , Anticuerpos Antiprotozoarios , Antimaláricos/uso terapéutico , Niño , Preescolar , Cloroquina/uso terapéutico , Método Doble Ciego , Guinea Ecuatorial/epidemiología , Femenino , Humanos , Inmunización , Lactante , Vacunas contra la Malaria/efectos adversos , Masculino , Persona de Mediana Edad , Parasitemia , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/inmunología , Adulto Joven
19.
Elife ; 92020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32662772

RESUMEN

Tanzanian adult male volunteers were immunized by direct venous inoculation with radiation-attenuated, aseptic, purified, cryopreserved Plasmodium falciparum (Pf) sporozoites (PfSPZ Vaccine) and protective efficacy assessed by homologous controlled human malaria infection (CHMI). Serum immunoglobulin G (IgG) responses were analyzed longitudinally using a Pf protein microarray covering 91% of the proteome, providing first insights into naturally acquired and PfSPZ Vaccine-induced whole parasite antibody profiles in malaria pre-exposed Africans. Immunoreactivity was identified against 2239 functionally diverse Pf proteins, showing a wide breadth of humoral response. Antibody-based immune 'fingerprints' in these individuals indicated a strong person-specific immune response at baseline, with little changes in the overall humoral immunoreactivity pattern measured after immunization. The moderate increase in immunogenicity following immunization and the extensive and variable breadth of humoral immune response observed in the volunteers at baseline suggest that pre-exposure reduces vaccine-induced antigen reactivity in unanticipated ways.


Asunto(s)
Inmunidad Humoral , Vacunas contra la Malaria/inmunología , Proteoma , Adulto , Variación Biológica Individual , Humanos , Malaria Falciparum/prevención & control , Masculino , Plasmodium falciparum/inmunología , Esporozoítos/inmunología , Tanzanía , Adulto Joven
20.
Clin Infect Dis ; 71(11): 2849-2857, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31782768

RESUMEN

BACKGROUND: A vaccine would be an ideal tool for reducing malaria's impact. PfSPZ Vaccine (radiation attenuated, aseptic, purified, cryopreserved Plasmodium falciparum [Pf] sporozoites [SPZ]) has been well tolerated and safe in >1526 malaria-naive and experienced 6-month to 65-year-olds in the United States, Europe, and Africa. When vaccine efficacy (VE) of 5 doses of 2.7 × 105 PfSPZ of PfSPZ Vaccine was assessed in adults against controlled human malaria infection (CHMI) in the United States and Tanzania and intense field transmission of heterogeneous Pf in Mali, Tanzanians had the lowest VE (20%). METHODS: To increase VE in Tanzania, we increased PfSPZ/dose (9 × 105 or 1.8 × 106) and decreased numbers of doses to 3 at 8-week intervals in a double blind, placebo-controlled trial. RESULTS: All 22 CHMIs in controls resulted in parasitemia by quantitative polymerase chain reaction. For the 9 × 105 PfSPZ group, VE was 100% (5/5) at 3 or 11 weeks (P < .000l, Barnard test, 2-tailed). For 1.8 × 106 PfSPZ, VE was 33% (2/6) at 7.5 weeks (P = .028). VE of dosage groups (100% vs 33%) was significantly different (P = .022). Volunteers underwent repeat CHMI at 37-40 weeks after last dose. 6/6 and 5/6 volunteers developed parasitemia, but time to first parasitemia was significantly longer than controls in the 9 × 105 PfSPZ group (10.89 vs 7.80 days) (P = .039), indicating a significant reduction in parasites in the liver. Antibody and T-cell responses were higher in the 1.8 × 106 PfSPZ group. CONCLUSIONS: In Tanzania, increasing the dose from 2.7 × 105 to 9 × 105 PfSPZ increased VE from 20% to 100%, but increasing to 1.8 × 106 PfSPZ significantly reduced VE. CLINICAL TRIALS REGISTRATION: NCT02613520.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Adulto , Animales , Europa (Continente) , Humanos , Malaria/prevención & control , Malaria Falciparum/prevención & control , Malí , Plasmodium falciparum , Esporozoítos , Tanzanía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...